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NOMENCLATURE

number of edges (struts) in a structure
number of edges (struts) in the fundamental region of a periodic structure
number of edges (struts) in a non-redundant structure defined by the

Maxwell equation
number of edges (struts) in the unit triangle

the number of divisions (fundamental regions) along the side of an array; also
termed the 'frequency’ of subdivision of the array

the number of divisions (unit triangles) along the side of the fundamental region;
this is the frequency of the fundamental region

number of redundant struts in the unit triangle

redundancy ; defined as the ratio of the redundant struts to the total number of
struts; in infinite periodic configurations this is the same as the ratio of struts (or
fractions of struts) to nodes (or fractions of nodes) within the fundamental region
or the unit triangle

number of unit triangles in a fundamental region of any size

number of unit triangles in a periodic triangular or rhombic array

number of fundamental regions in a periodic triangular or array

number of vertices (nodes) in a structure

number of vertices (nodes) in the fundamental region of a periodic structure

number of vertices (nodes) in the unit triangle

iii
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INTRODUCTION

Morphology, an interdisciplinary study which focuses on the grammar of form and
structure, draws upon various interdependent aspects of geometry, symmetry, topology,
structure and design. It thus provides a fundamental and integrative approach to the study
of large space structures composed of many identical component parts. The modularity,
the flexibility, and the lightness makes these structures attractive for covering large areas.
Morphological techniques can be used for deriving a large number of space structures with
novel geometries which can cover a fixed area with fewer component parts. This paper

presents such techniques.

Reducing the number of component parts required for large space structures is
advantageous for several reasons. Reduced weight (payload), reduced manufacturing cost,
and reduced on-orbit assembly time are among the more attractive reasons to support the
search for space structures constructed with fewer components. However, reducing the
number of struts and nodes from a pin-jointed structure is not simple. Structures can
become unstable when struts are removed from a stable configuration, and even if stability

is retained there may be a substantial loss in "stiffness”.

From the standpoint of geometry alone, uniformly periodic structures derived from
known truss configurations by removing struts or nodes are not known. This paper
addresses this issue, and presents techniques for systematically deriving new types of
configurations from the octahedral-tetrahedral truss by removing struts.  This truss is
known as the "octet truss" [1] or the "tetrahedral truss” [2]. It has been commonly used in
terrestrial architecture and has been proposed for several NASA projects. In this paper,
the octet truss serves as a reference configuration for the morphology and analysis of a
large number of configurations which are derived from it.

The paper is divided into four parts:

Part 1 deals with the morphology of the octet truss, and focuses on its geometry,

symmetry and part count.
Part 2 describes structure-generation techniques which enable the derivation of
new configurations from the octet truss by systematically removing struts and nodes.
X
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Part 3 describes nine examples of double-layer truss configurations obtained by applying
the techniques described in Part 2. From the large number of geometric configurations
possible, an assortment of structurally stable configurations are selected and described.
These differ in their morphology and offer various architectural and structural advantages.

Part 4 bricfly discusses the rationale including some practical and analytical considerations
associated with the truss configurations presented in Part 3 and summarizes the results of

the paper.

The techniques for generating structures described here are general and extend to a
similar derivation of configurations from other trusses and space structures. Interesting
candidates for such extension are the larger family of octahedral-tetrahedral configurations
from the entire symmetry of the cube, and the wider range obtained from the symmetry of
the icosahedron, a regular polyhedron with twenty equilateral triangular faces. Such
configurations introduce several different angles and strut lengths, and expand the

vocabulary of space architecture.



COMPARATIVE MORPHOLOGY OF CONFIGURATIONS
WITH REDUCED PART COUNT DERIVED FROM THE
OCTAHEDRAL-TETRAHEDRAL TRUSS

Haresh Lalvani’
Senior Research Scientist
Joint Institute for Advancemeni of Flight Sciences
George Washington University

and

Timothy J. Collins
Aerospace Engincer
NASA Langley Research Center

PART 1
MORPHOLOGY OF THE OCTAHEDRAL-TETRAHEDRAL

CONFIGURATION (OCTET TRUSS)
1.1 Geometry

The octahedral-tetrahedral (octet) truss configuration used here is well-known. Itis
composed of a periodic array of "regular” octahedra and tetrahedra, each composed of
equilateral triangular faces. The octahedron has eight faces and the tetrahedron has four
faces. Since the face triangles in the two cases have equal sides and angles, these two
polyhedra are termed regular. The array completely fills 3-dimensional space without gaps
and is thus referred to as a "space-filling"”. The octet truss itself, as is commonly used, is a
slice from the space-filling!. The design and structural characteristics of the octet truss are
discussed in references [3-5] for both flat and curved trusses.

A portion of the octet configuration is shown in Figure 1 as a truss made up of
nodes and struts. This truss can be decomposed into three layers: the top layer, the core,
and the bottom layer which are shown separately in the figure. In its plan view (shown on
the right side of Figure 1) the top and bottom layers are “tessellations” of equilateral
triangles in shifted position; the word tessellation has a Latin origin and means a mosaic or
tiling. The core, which consists of inclined members in a 3-dimensional zig-zag array, is a

tessellation of regular hexagons in this view.

* Also: Profcssor, School of Architecture, Pratt Institute, Brooklyn, NY 11205 (Permancnt Address); on
sabatical from Pratt Institute at the time of this work during the Fall 1989 and Spring 1990 semesters.
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Note that the octet array is actually composed of three polyhedra, and not two. In
addition to the octahedron there are two types of tetrahedra. One is an "upright”
tetrahedron sitting on its triangular base and having a vertex lying in the top truss layer as
shown in Figure 2. The other is an "inverted" tetrahedron with its vertex lying in the
bottom truss layer. The vertex of an upright tetrahedron corresponds to a top layer truss
node and is represented by a white circle. The vertex of an inverted tetrahedron
corresponds to a bottom layer truss node and is represented by a shaded circle. An
octahedron has three top layer nodes and three bottom layer nodes at its vertices. The
center of the octahedron is represented by a star as shown in Figure 2.

One possible triangular array of the octet configuration is shown in Figure 3a. The
particular configuration shown has an inverted tetrahedron (shown in dotted lines) at the
apex marked O, and will be referred to as OCTET 1 throughout the paper. In addition, the
other two corners of the array are also inverted tetrahedra. A portion of the OCTET]1
geometry in an infinite array is shown in Figure 3b. An alternative triangular array (and
corresponding infinite portion) of the octet configuration is shown in Figures 4a and 4b.
The triangular array has an octahedron at each of its three comers. This configuration of
the octet truss will be referred to as OCTET?2 in this paper. The practice of showing both
triangular and infinite portions of truss arrays will be carried throughout this paper. Thus
Figures 3b and 4b are presented even though it is obvious that the infinite configurations of
OCTETI and OCTET2 are identical. The usefulness of these two configurations will
become apparent when techniques for generating reduced-part-count geometries are
discussed later in the paper. A third type of triangular array is also possible. This
arrangement has three different polyhedra at its corners, and can be obtained from OCTET]1
or OCTET2 by keeping the apex O fixed and making the array smaller or larger such that
the other two corners have different polyhedra.

1.2 Symmetry

The octet truss, like all periodic configurations, can be characterized by its
symmetry. An understanding of its symmetry provides a basis for generating new
structures related to the octet configuration; such new structures will be described in Part 2.
Symmetry also provides an expedient way to determine the part count, or the number of
component parts, in a particular truss configuration.



1.2.1 Unit Triangle (Kaleidoscope)

The symmetry of the octet configuration? can be understood by identifying its
symmetry elements and the "unit" polygon or polyhedron. The unit polyhedron of the octet
configuration is a triangular prism. The plan view of this prism is an equilateral triangle.
This triangle is the unit polygon of the octet truss as shown in Figures 3 and 4, and is the
spatial unit which generates the entire octet configuration by using many replicas of the
same unit. It will be referred to as the "unit triangle" throughout this paper. Since all
configurations in this paper will be shown in their plan view, it will be convenient to
describe the octet configuration, and all the derived configurations described in Parts 2 and
3, in terms of this unit triangle. The unit triangle of the octet configuration is shown in
Figure 5. It is bounded by six symmetry elements, namely, three different axes of rotation
and three different mirror planes (see right side of Figure 5).

The three different axes of rotation are 3-fold axes of symmetry determined by the
vertical axes of symmetry passing through each of the three polyhedra shown in Figure 2.
A 3-fold axis of rotation divides space into three identical regions, where each region can
be superimposed over the other by a rotation of 120 (or /3) about this axis. In Figure 5,
these three axes are denoted as follows : the white triangle for the vertical axis through the
upright tetrahedron, the shaded triangle for the axis through the inverted tetrahedron, and
the star with the black triangle for the axis through the octahedron. The three mirror planes
are shown in heavy lines and join two adjacent axes. Note that the symbols for the rotation
axes shown in Figure 5 specifically denote rotation axes that have an associated (adjacent)
mirror plane. This is in contrast to 3-fold rotation axes which will become relevant later
that do not have an associated mirror plane. Note that the mirror planes are vertical and
perpendicular to the plane of the octet truss. The three mirror planes thus define a 3-
dimensional region shaped as a triangular prism; this is the unit polyhedron mentioned
earlier. This region, bound by mirrors, acts like a 3-dimensional kaleidoscope. The
portion of the octet truss within this kaleidoscope multiplies by reflections about the mirror

planes to generate an infinite octet configuration.

The unit triangle contains fractions of truss struts and nodes (shown on the left in
Figure 5). The top, core and bottom layers have "half-struts” within the unit triangle which
become full struts after reflection. These three layers are shown separated in Figure 6.
While the portions of top and bottom struts within the unit triangle struts are half as long as
the full strut, the core strut is halved lengthwise. The top and bottom nodes are each 1/6th
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portions of a full node determined by the 60° angle of the unit triangle. From these
fractional parts within the kaleidoscope, the entire octet truss is generated by reflections.
Before this process is described, it is important to point out that the unit triangle can be
further decomposed into a smaller region called the "fundamental region” [6]. This is
described next.

1.2.2 Fundamental Region

The unit triangle of the octet truss has a subtle symmetry within it. It can be halved
into two smaller right-angled triangular regions by a vertical plane passing through the
octahedron (Figure 7, top). The right-angled triangle is the minimum unit which is
necessary to generate the entire structure by "symmetry operations” and is termed the
"fundamental region" (Figure 7, bottom). The vertical plane is indicated by a dashed line
and is referred to as a plane of "inversion”. In addition to this plane, the fundamental
region of the octet truss is bound by two mirror planes, and two 3-fold axes of symmetry
lying on two of its vertices. One vertex is determined by an octahedron and the other by a
tetrahedron.

By inversion about the vertical plane, everything lying on the bottom right of the
plane and facing up is converted to top-left and facing down. In Figure 7, this is illustrated
by shading the two halves of the unit triangle in two different shades. The darker shade
represents the bottom right-half of the octet truss and includes the bottom 1/6 node, the
bottom half-strut and half of the core strut lying below the "mid-plane” of the truss; the
mid-plane is an imaginary horizontal plane lying midway between the top and bottom truss
layers and which divides the truss into upper and lower halves. By inversion, the darker
shade becomes the lighter shade, which represents the top left-half of the truss and includes
the top 1/6 node, the top half-strut and the top half of the core strut. Inversion around a
plane, as described here, is also a 2-fold rotation around a horizontal axis lying on the mid-
plane and passing through the center of the octahedron and the center of the core strut.
Inversion flips an upright tetrahedron into an inverted tetrahedron.

1.2.3 Periodic Arrays of Unit Triangles

Many replicas of the unit triangle, each containing two fundamental regions, can be used to
fill the plane and thus generate a periodic truss array. There are several different plane-
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filling procedures. In each procedure, the fraction of the octet truss within each unit
triangle (and hence fundamental region), repeats correspondingly to generate the full octet
truss. One procedure which uses increasingly larger "triangular arrays" is shown in
Figure 8. It uses the unit triangle as a repeating unit. The single unit triangle in (a) grows
to an arrangement of four unit triangles in (b) by local reflections across the mirror planes,
and further to nine unit triangles in (c) by additional local reflections. The process can be
continued to get increasingly larger arrays of the unit triangle3. An array of 36 unit
triangles is shown in (d). -

The extent of plane-filling can be described in terms of the size of the triangular array. This
size is specified by the number of divisions f along the outer edge of the triangular array,
where f denotes the "frequency” of subdivision of the array [see Reference 1]. The four
stages shown in Figure 8 thus are f=1, 2, 3, and 6 respectively.

The corresponding portions of the octet truss for each of the four stages in Figure 8 are
shown in Figure 9. The rotation axes of the octahedra and tetrahedra shown in Figure 8
correspond exactly to the top nodes, bottom nodes, and the centers of octahedra shown in
Figure 9. The top, core and bottom layers corresponding to these four stages are shown
separated in Figure 10.

The number of unit triangles Ty in a triangular octet array can be described in terms of f:

Ty =f2 (1)

Besides a triangular array, other useful periodic arrays of unit triangles are thombic
and hexagonal arrays. These will be discussed in more detail later. The number of unit
triangles in a thombic array is 2xTy, since a rhombus is composed of two triangles. In a
hexagonal array, the number of unit triangles is 6xT¢ since a hexagon is composed of six
triangles. For the purpose of formulating analytical models of various truss configurations,
hexagonal arrays were used. These were obtained by rotating triangular arrays, such as
those in Figures 3 and 4, around the apex marked O in 60° increments.

For the purposes of this study, a triangular array with f=12 was chosen as a
baseline configuration. This array is composed of 144 unit triangles and corresponds
exactly to configurations OCTET! or OCTET2 shown earlier in Figures 3a and 4a. Fora?2
meter strut length, f=12 produces a 24 meter wide (edge to edge) hexagonal array. The
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size and shape of such a hexagonal truss array were considered practical for several future
NASA applications currently under consideration.

1.3 Part Count

The number of component parts or "part count” of a space structure is an important
consideration in the design, manufacturing, and assembly of space structures. The
fundamental region and the unit polygon/polyhedron provide an expedient way to
determine the part count in periodic space structures. Such a part count is here termed the
"fractional part count”. The fundamental region has been used to derive the part count in
polyhedral structures in reference [7]. The part count within the fundamental region is
given by Vf and Ef, where V£ is the number of nodes (or vertices) and Ef the number of
struts (or edges) within the fundamental region. The part count within a unit triangle given
by V¢ and E, where V¢ is the number of nodes and E; the number of struts in the unit
triangle. Either V¢ and Ef, or V¢ and Ey, can be used to derive the total part count in a
periodic structure. However, V¢ and E; will be used in Part 3 as a basis for comparing the

part counts of different configurations derived from the octet truss.

1.3.1 Part Count for the Infinite Qctet Truss

In the case of the octet configurations OCTET1 and OCTET?2, the unit triangle is the
smallest region which has component parts from the top, core and bottom layers. Thus V;
and E; and are derived first and can be halved to obtain V¢ and Ef since there are two
fundamental regions in the unit triangle. The portion of the truss that lies within the unit
triangle was already shown in Figure 5. The top and bottom struts are each halved in the
region, the core member lies on the mirror plane and is therefore also halved since it is
shared with a néighboring unit triangle. That is,

Et(top) = Ey(bottom) = Ey(core) =1/2 . 2

Since each of the three layers of the truss have a half-strut within the unit triangle, it
follows that the number of struts in each layer equals 1/3rd the total number of struts, a
result reported in reference [2]. Further, the total number of struts E in the unit triangle,

obtained by adding the struts in each of the three layers, equals 3/2, i.e.
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Er=32 3)

In Figure 5, we also see that the unit triangle contains 2 fractional nodes where each
fraction is 1/6th of a full node. Each node is shared by six regions meeting at a 3-fold axis
of rotation and is thus divided into six equal fractions. The total number of nodes V¢ within

the unit triangle equals 2 times 1/6 or 1/3, i.e.

Vi=1/3 4)

From relations (3) and (4),

Ef = O2)Vi e (5)

This relation, based on the unit triangle, also gives the proportion of the total number of
struts E to the total number of nodes V in the infinite octet truss since V¢ and Ey are both

multiplied the same number of times in a periodic array. Relation (5) can also be described
in terms of V¢ and Ef by replacing E; by Ef, and V¢ by Vf, respectively.

1.3.2 Redundancy in Infinite Configurations

For any particular truss, those struts which are not necessary to provide a rigid
(stable) structure are generally termed redundant. The redundancy in an infinite periodic
configuration can be defined as the ratio of struts to nodes in the fundamental region or
alternatively in the unit polygon/polyhedron. Since the unit polygon/polyhedron will be
used for comparative part count studies in Part 3, the redundancy here is described in terms
of the unit triangle. From the Maxwell equation [8], the number of struts E, in the unit
triangle of a non-redundant infinite truss configuration with V¢ nodes can be expressed as :

Em =2V (2-dimensional case) ... 6)
and

Em =3V (3-dimensional case) . ¢))

The number of redundant struts r in the unit triangle equals E-Ep, 1.e.
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r=E{-Em (8)

The redundancy R is defined here as the ratio of the number of redundant members r to the
number of members E;. That is,

R = r/Et = (E( - Em)/ E[ =1- (Em/ E[) ................ 9)
Substituting for Ep, from (6) and (7) respectively in (9),
R=1-2V{/ E)) (2-dimensional case)  .............. (10)

R =1- 3Vy/ E;) (3-dimensional case) .............. (1n

For the infinite octet configuration, the redundancy R can be obtained by substituting the
values of Vi (=1/3) and E; (=3/2) from (3) and (4) in relation (11). This gives:

R =1/3 (or 33.33%) (double-layered case)  ......cccevrun (12)

That is, the octet truss has a redundancy of 1/3 (33.33%) within the unit triangle. It
follows that the entire infinite truss also has 1/3rd redundant members. Alternatively, the
redundancy from the fundamental region can be obtained by substituting V¢ and E¢ by V¢
(=1/6) and Ef (=3/4) respectively in relation (11).

The redundancy of 33.33% defines the upper limit for infinite truss configurations
derived from the octet truss. All derivatives obtained by removing struts will have fewer
members than the octet configuration and they will thus have R < 33.33%. The
redundancy of the top and bottom layers can be similarly derived using relation (10). From
Fig.6, both top and bottom single layers have V{=1/6 and E¢=1/2. Substituting these values

in relation (10) gives

R =1/3 (or 33.33%) (single-layered case)  ......ccen.. (13)

In the various examples described in Part 3, this limit will provide a reference for the single

layers of derivative configurations.
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1.3.3 Part Count in a Periodic Array

The total part count in a periodic array can be determined by multiplying the number
of parts within a unit polygon by the number of unit polygons in the array. Considering
triangular arrays of the octet configuration, the part count within the unit triangle is given
by relations (3) and (4), and the number of unit triangles in a triangular array is given by
relation (1). Multiplying both (3) and (4) by (1),

E=TixE = 2xEt = (14)
V=Tix Vi =f2xVy e (15)

where E and V are the number of struts and nodes respectively in a triangular array of the
octet configuration. Alternatively, E and V can be determined by multiplying Ef and Vf,
respectively, with the number of fundamental regions Tt in a triangular array. The number
in a thombic array is twice, and in a hexagonal array six times the number in a triangular
array. Examples of determining part count will be discussed in Part 2 of the paper.
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PART 2
STRUCTURE-GENERATION TECHNIQUES

From the octet truss configuration an extremely large number of structures can be
derived by removing struts and/or nodes. Systematic structure-generation of a variety of
space structures by combinatorial addition or removal of edges within a fundamental
region has been described in [7]. This includes a large class of polyhedra and some
examples of space-filling polyhedral structures. Extension of this method to the generation
of complex 2-dimensional periodic patterns has been described in [9]. The techniques
presented in this paper are an extension of the prior work to double-layered space structures
and are restricted to configurations derived from the octet truss. In all examples of
configurations described in this paper, the node positions of the octet truss (OCTET! or
OCTET2) and the derived configuration are the same. The derived configurations vary in
their geometry, type of symmetry, the number of struts and nodes, and structural

performance.

Since the double-layered configurations are complex in their geometry and
symmetry, they are decomposed into separate top, core and bottom layers. These are then
superimposed to form a complete structure. Of the three layers, the top and bottom layers
were found to be more important in generating new configurations by removing struts and
nodes from the octet configuration. The specific geometry of examples of the derivative
double-layered configurations will be described in Part 3. The core geometry of the source
octet configuration (OCTET1 or OCTET2) was left unchanged in two-thirds of the
examples. In the remaining one-third cases, some core struts were removed because their
associated nodes in the top or bottom layers had been removed. In these cases, the core

geometry was thus dependent on the geometry of the top and bottom layers.

The separated top and bottom layers act like "single-layer configurations”. The
types of permissible symmetries of single-layer configurations are described first in this
section. The concept of extending the fundamental region to a larger size is described next,
and is followed by a description of plane-filling procedures. The method of removal of
struts and nodes to generate two different classes of single-layer configurations with a
reduced part count is described next. In some cases, top and bottom layers having an
identical geometry and symmetry are superimposed after a rotation or a reflection of one of
the layers. In other cases, two different geometries and symmetries are superimposed to
obtain a double-layered configuration.
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2.1 Permissible Symmetries

When some nodes and struts are removed, the derived configuration may have a
different symmetry than the original octet truss. For the top and the bottom single layers,
each taken separately, there are only three permissible symmetries that are compatable
with the octet truss geometry [10]. These three symmetries use only 3-fold axes of
symmetry. Although 6-fold symmetry is possible at a node of a single-layer configuration,
for double-layer configurations, such 6-fold symmetry becomes 3-fold. When top and
bottom single layers are superimposed, as in the octet truss, the double-layered
configurations obtained this way have more complex symmetries. The permissible
symmetries for double-layered configurations derived from the octet truss are eight4 in
number. Such symmetries are described in reference [11]. The three permissible
symmetries for the top and bottom layers of the octet truss with struts and/or nodes
removed will be referred to as Symmetry Types A, B and C, and are shown in Figure 11.
As will be described next, the fundamental regions of these three types of symmetry are
different. Each fundamental region has a different shape and is bound by different
symmetry elements. It is noted that because the fundamental regions discussed throughout
the remainder of the paper are for single-layer configurations (all struts lie in a plane), these
fundamental regions differ from the double-layer fundamental region shown for the octet
truss in Figure 7. Recall that a fundamental region is the minimum truss unit necessary to
generate an entire truss array by symmetry operations.

2.2 Fundamental Regions of the Permissible Symmetries

The fundamental region of Symmetry Type A is a kaleidoscopic equilateral
triangle. It is bound by three mirror planes on the sides of the triangle, and three different
3-fold axes of rotation at the vertices. The three different axes shown in the figure
correspond to axes through the two different tetrahedra and the octahedron. Alternatively,
the axis could pass through three tetrahedra or three octahedra. This is the type of

symmetry characteristic of the top or bottom layer of the octet truss configuration.

The fundamental region of Symmetry Type B is an isosceles triangle, with an
obtuse angle of 120°. The two acute vertices have the same 3-fold axis of rotation and the
side joining these two is a mirror plane. The other two sides (shown as dashed lines)
define the edges of the fundamental region only and are not mirror planes. The obtuse
vertex is a different type of 3-fold axis of rotation. There are no mirror planes passing
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through this axis of rotation. The notation is modified to show the pinwheel (or rotary)
nature of the axis by extending the sides of the small triangle in a clockwise or counter-
clockwise manner. In the figure, the three axes shown in the fundamental region pass
through three upright tetrahedra. Alternatively, the three axes could pass through three
inverted tetrahedra or three octahedra. Three such regions, obtained by a 3-fold rotation
around the obtuse vertex (pinwheel), make a larger kaleidoscopic equilateral triangle.

The fundamental region of Symmetry Type C is a rhombus with acute angles of
60°. It has three 3-fold axes of rotation which are different and a fourth 3-fold axis which
is identical to any one of these three. There is no mirror plane in this region and hence all
the 3-fold axes of rotation act like pinwheels. The notation of the axes is modified
accordingly as in the last example. In the figure, the three different axes pass through the
inverted tetrahedron, the upright tetrahedron and the octahedron. The fourth axis is shown
through an upright tetrahedron.

2.3 Fundamental Regions of Increasing Size

Several unit triangles of the octet truss can be fused together to generate
fundamental regions of increasing size for each of the three types of symmetries shown in
Figure 11. In each case the unit triangles, which are smaller, "subdivide" the interior of
the larger fundamental region. Such subdivision permits the possibility of defining
fundamental regions of any size containing any number of struts and nodes. It will be
shown that larger fundamental regions allow for a larger number of strut and node
combinations which can be removed to derive reduced-part-count structures. Details of this
concept will now be described for each symmetry type. Alternative subdivisions of the
fundamental region have been addressed in [9].

Symmetry Type A: A sequence of increasingly larger fundamental regions for
Symmetry Type A is shown in Figure 12a. The size of the fundamental regions is
specified by the frequency f1 which equals the number of unit divisions (or unit triangles)
along an edge of the region. In Symmetry Type A, this division is along the edge of the
region as shown. The first stage, fl=1, is the smallest possible fundamental region for this
symmetry type and has the same size as the unit triangle of the octet configuration. The
second stage, f1=2 fundamental region, is composed of four unit triangles (shown in



dotted lines). The f1=3 fundamental region has 9 unit triangles (also shown in dotted
lines), the f1=4 fundamental region has 16 unit triangles, and so on.

For each fundamental region shown in Figure 12a, the outer three sides are mirror planes
as required by Symmetry Type A, and the three vertices on the outer corners are three
different axes of symmetry. In the figure, the vertex marked O is kept fixed and
corresponds to an axis through an inverted tetrahedron in the example shown. As fl
increases, the other two axes change and are specified by the sequence of the three
different polyhedra in the octet array (compare with Figure 8 or 9).

The number of unit triangles t in a fundamental region of frequency f1 and Symmetry Type
A can be described as follows :

t=(fD2 e (16)

and is similar to equation (1) which gave the number of unit triangles in an octet truss

array.

Symmetry Type B: A sequence of two increasingly larger fundamental regions for
Symmetry Type B is shown in Figurc 12b. Note that the subdivisions of the fundamental
region for this symmetry are along the longer side of the fundamental region and are
restricted to values of f1 which are multiples of 3. This is due to the nature of the 3-fold
axis of rotation at the obtuse vertex of the fundamental region which requires a rotation of
1200 at this vertex. By this rotation, a 3-fold axis lying at one acute vertex of the
fundamental region is rotated to the other acute vertex. Thus the two acute vertices of the
fundamental region must be the same. This occurs only when f1 equals 3, 6,9, 12 .... and
so on. In the figure, each 3-fold axis is through an inverted tetrahedron as indicated by the
shaded triangles. Alternatively, the 3-fold axes could be through upright tetrahedra or
octahedra only, but here too the values of f1 are restricted to multiples of 3.

The number of unit triangles t in a fundamental region of frequency fl and Symmetry Type
B can be described as follows :

t=13x (D2 e (17)
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Symmetry Type C : In Symmetry Type C there are two different ways0 to obtain larger
rhombic fundamental regions which are subdivided into unit triangles. Alternative 1 is
shown in Figure 12c, and is based on "doubling" the fundamental regions of Type A
shown in Figure 12a. The number of unit triangles t is also doubled in Alternative 1, and

is given by :
t=2x (2 e (18)

where f1 is any integer. Here the frequency f1 is given by the number of divisions along
the shorter diagonal of the rhombic fundamental region.

Similarly, Alternative 2 (Figure 12d) is obtained by "doubling” the fundamental
regions of Type B shown earlier in Figure 12b. Again, f1 is restricted to multiples of 3 as
in Type B, and is given by the number of divisions along the longer diagonal of the
rhombic fundamental region. The number of unit triangles t is double that in Type B and
can be expressed as :

t=23x(fH2 e (19)

2.4 Plane-filling Procedure

Once a fundamental region with a specific value of f1 is determined, many replicas
of this region can be used to fill the plane. In other words, periodic truss arrays are
generated which contain many replicas of the fundamental region each of which is
composed of one or more unit triangles. The procedure for plane-filling is slightly different
for the three types of symmetries.

Symmetry Type A:

In Symmetry Type A, the procedure of plane-filling is the same as described earlier
in Section 1.2.3 to obtain a triangular array of unit triangles whereby the equilateral triangle
fundamental region is repeated by local reflections about the mirror planes. An array using
f1=1 fundamental regions (same as unit triangles) is shown in Figure 13. The extent of
plane-filling is specified by f as before. In the figure shown, f=6. In Figure 14, a
fundamental region with f1=2 is used to generate an array with f=3. The number of

2-5



fundamental regions Tf in a triangular array of frequency f and having Symmetry Type A is
given by the following relation which is similar to relation (1):

Te= (F )2 (Type A) oo (20)

The number of unit triangles is the same in Figures 13 and 14. In Figure 14, the
f1=2 fundamental region with t=4 is four times as large as the f1=1 fundamental region in
Figure 13 which has t=1. The f1=2 region fills a triangular array of the same area with
one-fourth as many units. For a fixed area, f decreases as f1 increases. The number of
unit triangles Ty in a triangular array of frequency f and composed of fundamental regions
of frequency f1 is obtained by multiplying the number of unit triangles in a fundamental
region by the number of fundamental regions.

Te=txTf
Te=(Fxf1)2 21

Relation (21) is similar to relation (1) but is more general, and it holds for all three
Symmetry Types. Each single layer of the octet truss is a special case of symmetry type A
with each fundamental region having one unit triangle along the side of a fundamental
region, i.e., f1=1 and Tt = f 2 as in relation (1).

Symmetry Type B:

In Symmetry Type B, the values of f1 are restricted to multiples of 3. The
minimum case has f1=3 and is shown in Figure 15. By rotation about the pinwheel axis,
three fundamental regions form a large equilateral triangle which is then repeated by
reflections (as in Sec.1.2.3) to generate a triangular array. In the example shown, f=2
and the number of unit triangles equals 36 as in the previous two cases. Relation (21)
holds for the number of unit triangles, and relation (20) for the number of fundamental
regions Tt is modified as follows:

Te=3(E)2  (TypeB) o 22)

Symmetry Type C:

In Symmetry Type C, a different plane-filling procedure is used to generate
periodic arrays rhombic fundamental regions. Instead of repeated reflections, 3-fold
rotations are used to generate a rhombic array as shown in Figure 167. The rhombic array
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is twice the size of the triangular array, and can be described in terms of f and f1 as in the
other two cases. Here f1 can be any number. For rhombic configurations, the number of
unit triangles Ty in the fundamental region and the number of fundamental regions a

periodic Ty array are given by:

Ty = 2(f x f12) Te=(f)2  (Type C, Alternative 1) coveeeeeee. (23)
T,=2(f x f12) Tg=3(f)?2 (Type C, Alternative 2)  .coooveeenen 24)

2.5 Removal of Struts and Nodes

Once a larger fundamental region with frequency f1 and containing truss struts and
nodes is obtained, an extremely large number of truss configurations can be derived by
removing struts and nodes from this region8. The larger fundamental region contains a
larger portion of the octet configuration. This is shown in Figure 17 with fundamental
regions of increasing size derived from the top layer of OCT ET19. The stages f1=1,2,3,4
and 6 correspond to the symmetry representations shown in Figure 12a and the number of
component parts in the fundamental region increases as f1 increases. This permits more
combinations for strut or node removal enabling the generation of an increasingly larger
number of derived structures. When the fundamental region with removed parts is repeated
to fill space, configurations with reduced part count are obtained. The new structure has a
different geometry, and its symmetry may or may not be the same as the structure from
which it is derived.

Two useful classes of single-layer configurations with a reduced part count are
identified in this section. The first class includes configurations from which only struts are
removed and all nodes are retained. The second class of structures includes examples
where single nodes, or a group of nodes are removed along with associated struts. One
example of each type of configuration is described here to illustrate the technique, and
others will be shown in Part 3.

The first example (Figure 18) shows the generation of a single-layer configuration
by removing struts only. It has a Symmetry Type A, the fundamental region has f1=2,
and the triangular array has =6 (illustration on right). The "source” fundamental region,
corresponding to the equivalent region of OCTET! from which the struts are removed
(compare with f1=2 region in Figure 17), is shown on left (top) and contains one full strut
and two half-struts. From this many combinations of struts can be removed. In the
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example shown, one half-strut is removed from the source fundamental region to obtain a
"derived" fundamental region shown above it (bottom left). When this new fundamental
region is repeated to fill the plane by reflections, a new single-layer configuration is
obtained. This new configuration has struts removed from it in a periodic manner as

shown in the illustration10.

Larger fundamental regions also permit the removal of more combinations of struts
and nodes for the purpose of deriving new configurations. One example is shown for
Symmetry Type B with f1=6 in Figure 19. The source fundamental region is again shown
at top left, the derived one at bottom left, and the triangular array on the right. The source
fundamental region has 5 full struts and 2 half-struts from which 2 full and 1 half-strut are
removed. In addition, the source has 1 full and 2 half-nodes from which 1 half-node is
removed. Note that the removed half-node is still shown in the figure for visualization
purposes. However it is clear in the truss array that this node has been removed because no
struts are attached to it. When repeated to fill the plane, the triangular array shows the
larger open spaces that are generated within the single layer. When the triangular array
itself is repeated, e.g. to generate a hexagonal truss array, the open spaces become closed
open areas in the shape of a non-regular hexagon (see for example, the top layer of
Fig.29d).

2.6 Superimposition of Layers

From the large number of single-layer configurations which can be generated by the
techniques just described, a still larger number of double-layer configurations can be
obtained by superimposing any top over over any bottom layer and adding core members.
The size of the array fixes f for both layers. The matching of the two layers is guaranteed
as long as f1 is kept the same in both. Superposition of two layers with different values of
f1 is possible, and symmetry is retained as long as one value of f1 is a simple multiple of
the other. Although this paper presents examples where top and bottom layers have the
same symmetry, it is possible for the two layers to have different symmery types.

A variety of examples will be described in Part 3. Some of the most useful cases
are configurations where the two layers are identical in their geometry and symmetry. This
guarantees the same part count and same assembly procedure for the two layers. Several

examples of this type will be shown.



2.7 Summary of Structure-Generation Procedure

From the preceding sections, the procedure for generating a periodic double-layered
configuration with a reduced part count can be summarized as follows :

1. Separate the double layer of the source octet configuration (OCTET1 or OCTET?2)
into top and bottom layers.

2. Apply the following structure-generation techniques to the separate layers :

i) Select the type of fundamental region by selecting the
Symmetry Types A, B or C.

i) Specify f1, the frequency of the fundamental region.

iil) Remove struts or nodes from the fundamental region.

iv) Apply an appropriate plane-filling procedure using reflections, rotations or
translations, to the fundamental region which has struts and nodes
removed (this specifies f).

3. Superimpose the top and bottom layers.

4. Insert the core, i.e. connect the top and bottom nodes with appropriate core struts.

Note that the same procedure of removing struts and nodes can be applied to the core.
However, in the examples described in Part 3, the core was either kept intact or its
geometry was determined by the top and bottom layers. The dependent nature of the

geometry of the core will become clear with specific examples.

2.8 Part Count and Redundancy of Derived Configurations

For any derived periodic array, a general procedure for determining the part count and the

redundancy is as follows :

1) Determine f and f1; fis the frequency of the fundamental regions within the array and f1
is the frequency of the unit triangles within the fundamental region.

2) Determine Ef and V¢, the number of struts and nodes within the fundamental region
(after struts and nodes are removed); this can be done by determining the fundamental
region of the configuration and counting the parts within it. Note fractional parts as
appropriate.
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3)

4)

5)

6)

7)

8)

Determine t, the number of unit triangles within the fundamental region; this can be
derived from relations (16-19).

Determine Tf, the number of fundamental regions in the periodic array!!. This is
different for each Symmetry Type and is given by from relations (20) and (22-24).

Determine E¢ and V¢, the number of struts and nodes within the unit triangle; this can
be obtained by dividing the result of Step 1 by Step 2, i.e.

Et =Ef/t e (25)
and
V[=Vf/( ............... (26)

Determine R, the redundancy of the configuration; this is derived from relation (10) for
a single-layer configuration.

Determine Ty, the number of unit triangles in the periodic array with fundamental
regions of frequency f.

Derive E and V, the total number of struts and nodes in the periodic array. These can be
obtained in two different ways :

1) from the fundamental region by multiplying the results of steps 2 and 3, i.e.

E=Ef x Tf o 27
and
V =Vf X Tf ............... (28)

or

i1) from the unit triangle by multiplying the results of steps 3 and 5, i.e.

E =E[ X T[ ............... (29)
and
V=Vt X Tt ............... (30)

All of the relations described so far are summarized in Table 1.
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Symmetry Type C

Symmetry Type A | Symmetry Type B (Rhombic Array)
(Triangular Armray) (Triangular Array)
Alternate 1 Alternate 2
Unit Triangles 2
in Fundamental £12 fl~ 2f12 24,2
Region (t) 3 3
Fundamental
Regions 2 3f2 2 3f2
in Array (Tp)
Unit Triangles
in (f x f1)2 (f x f1)2 2(f x f1)2 2(f x f1)2
Array (T
Nun_lber _of Struts in
Unit Triangle (Ep E_ }_E_f E; 3E,
E < of £17 f12 2112 2117
ot
Number of Nodes
in Unit Triangle Vi 3V, Vi 3V,
(V) — = — —
f12 12 2617 211
V=t
U
Struts in Array (E) E; f2 3E; f2 E( 2 3E; 2
E=ETy or or or or
or
E=ET E/(f x £1)2 E(f x f1)2 2E(f x f1)2 2E(f x f1)2
Nodes in Array (V) Vi 2 3V( 2 Vi f2 3V f2
V=ViTy or or or or
or
V=ViTy Vi(f x f1)?2 Vi(f x £1)2 2V(f x 1) 2V (f x £1)2
Table 1.

Summary of Equations for Single-Layer Truss Arrays of the Three Symmetry Types.
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I1.

Examples

As an example, the derivation of the part count and redundancy of the single-layer
truss configuration of Symmetry Type A derived by removing struts from the top layer of
OCTETI, shown in Figure 18,_is described.

1) The source fundamental region (on top left) has a frequency 2, i.e. f1=2. This
region has 1 full strut and 2 half-struts, making a total of 2 struts, i.e. Ef=2. It also has a
1/6th node at a vertex and a 1/2 node at the opposite edge of the triangular region, making a
total of 2/3rd nodes, i.e Vr=2/3. The derived periodic array has 6 fundamental regions
along a side, i.e. f=6.

2) In the derived fundamental region (shown below on left), one half-strut is
removed while the nodes remain unchanged, i.e. Ef=3/2 and V§=2/3.

3) The number of unit triangles in the fundamental region, given by relation (16),
equals 4, i.e.t=4.

4) The triangular array on the right is obtained by using the plane-filling procedure
for Symmetry Type A, i.e. repeated reflections of the fundamental region, and has a
frequency f=6. The number of fundamental regions Tt in the triangular array of f=6 as
shown is determined by relation (20) and gives T§=36.

5) Since the fundamental region has 4 unit triangles, E¢=3/8 (from relation (25)),
and V¢=1/6 (from relation (26)).

6) The redundancy R, obtained by substituting E¢ and V¢ into relation (10), is
R=1/9 or 11.11%.

7) The number of unit triangles Ty is obtained by substituting for f and f1 in
relation (21) and gives Ti=144.

8) The total number of struts E, obtained by substituting for Ef and Tf in

" relation (27) or substituting E¢ and Ty in relation (29), gives E=54. Similarly, the total

number of nodes V, obtained by substituting for V¢ and Tf in relation (28) or V¢ and Eyin
relation (30), is V=24.

The part count and redundancy for the example array having Symmetry Type B and
shown in Figure 19, derived from the top layer of OCTET1 by removing nodes and struts,
is similarly derived as outlined below and as shown in the figure.

1) f1=6, f=2

2) Ef=7/2 and V¢=3/2

3) t=12

4) Te=12

5) E=7/24 ,V=1/8
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IL.

6) R=1/7
7) Ti=144
8) E=42, V=18

Finally, another example of structure generation and of determining part count and
redundancy for a single-layer truss configuration with struts only removed will be given for
a rhombic array. Figure 20 shows a single-layer configuration of symmetry type C
(alternate 2) obtained by removing struts from the top layer of OCTET?2. Derivation of the
part count and redundancy for this array is outlined as follows:

1) f1=3,f=4

2) Ef=2 and V=1

3) =6

4) Te=288

5) E=1/3, Vi=1/6

6) R=0 (no redundant struts in this single-layer configuration)
7) Ti=288

8) E=96, V=48

Note that for all of the examples given the values obtained for E and V can be
verified by directly counting the number of struts and nodes in Figures 18, 19, and 20.
When doing this, all struts and nodes lying on the edges of the derived array must be
assigned their appropriate fractional count. For example, the outer edge of the array in
Figure 20 contains 16 half nodes.

This procedure will be used throughout Part 3 for configurations derived from the
octet truss, but will focus on fractional part count and redundancy which are necessary for
a comparative study of the different configurations. In double-layered truss structures, the
part count for each layer, the top, bottom and core, is derived separately. The number of
struts are obtained by adding the strut count for each layer, and the number of nodes is
obtained by adding the node count in the top and bottom layers. Since the top, core and
bottom layers may have a different symmetry or fundamental regions of different size, the
fractional part count can be obtained by adding E; and V¢ for the separate layers.

Note that the above procedure applies to both 2-dimensional and 3-dimensional
configurations, but in the case of the latter the fundamental regions are 3-dimensional and
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hence more complex. Although beyond the scope of this paper, it is possible to generalize
this procedure for application to all other double-layered and multi-layered symmetries by
using 3-dimensional fundamental regions, and by replacing the unit triangle with the more

general concept of a "unit polygon" or a "unit polyhedron”.
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PART 3
CONFIGURATIONS WITH REDUCED PART COUNT

In this part, the structure-generation techniques described in Part 2 are applied to
derive a variety of double-layered structures. The motivation for the examples shown here
will be explained later in Section 3.3. No attempt has been made to be exhaustive. The
selection shown here is representative and includes configurations with interesting
geometries and structural properties. This selection excludes several configurations which
were considered but were found to be unstable or to have a substantially reduced structural
performance (see section 4.1). Some of the configurations lend themselves towards an
integration of architectural and functional requirements with the structure. The notable
examples are structures with open spaces which permit insertion of modules or other

structures.

This part is separated according to the two classes of structures discussed in Part 2,
namely, configurations with only struts removed, and those with both struts and nodes
removed. In each class, structures are derived from the source octet configurations,
OCTET!1 and OCTET2. These two configurations were described in Part 1 (see Figures 3
and 4), and provide the starting point for generating new structures. The top and bottom
layers of the two source configurations are shown in Figures 21 and 22 respectively. As
described earlier, the fundamental region (shown on left in each figure) has f1=1 and the
array has f=12. Since the fundamental region and the unit triangle are the same in each
layer, the number of unit triangles in the fundamental region is t=1 for the top and bottom

layers. The part count in the fundamental region and the unit triangle is also the same. The
number of fractional struts in each layer equals 1/2, i.e. Ef = Ey = 1/2. The number of

fractional nodes in the top and bottom layers equals 1/6,1.e. V=V =1/6.

The top and bottom layers of OCTET1 and OCTET? layers act as master templates
from which the top and bottom layers of the derivative configurations are obtained. The
same procedure is used for the core. The derived top, bottom and core layers are then
superimposed to obtain a new double-layered configuration. The positions of the nodes in
the top and bottom layers of the new configurations remains the same as the source
configuration in all cases. The size of the unit triangle also remains the same in the source
and all derived configurations. Keeping the unit triangle fixed is an important constraint

and provides a fixed unit measure for all configurations.
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A total of nine different derivative double-layered configurations are described here.
Of these, four are obtained from the octet configurations by removing struts only and the
remaining five have both nodes and struts removed. The latter includes one example of a
configuration where nodes are removed from one layer layer only, while the other four
have nodes removed from top and bottom layers. The derived configurations vary
significantly from one another in their geometry, symmetry and the distribution of struts
and struts in the fundamental region. Each configuration is identified by a name. These
examples are only a small part of an infinite number of configurations with a reduced part
count which can be derived by the structure-generation techniques used here. Clearly many
more examples can be derived by mixing-and-matching different top and bottom layers.
An infinite number of double-layer configurations can be generated in this way. The
number of possible double-layer configurations increases with f1, as in the case of the top
or bottom layer alone, and is greater than the number of configurations possible from each

separate layer.

For comparative purposes, all examples are shown as triangular arrays and
correspond exactly to the size of the source octet arrays shown earlier in Figs.3a and 4a. In
each case, triangular arrays of the top layer are shown in heavy lines and the bottom layer
are shown with lighter lines. The separate single layers are shown first and are followed
by the superimposed double layers. In examples where nodes are removed, the core
configuration is also shown. The fundamental region and the source region of the source
octet configuration are shown separately alongside. Within the array itself, the fundamental
region at the apex O is shaded and is subdivided into unit triangles. This subdivision into
unit triangles defines f1 which gives a measure of the size in unit triangles of the
fundamental region. The number of unit triangles t in the fundamental region is derived

from relations (16-19).

3.1 Configurations with Only Struts Removed

Four examples of double-layered configurations derived by removing struts only
are described here. Of these, two are derived from OCTET! and two from OCTET2,
Three examples have the same geometry (and hence same symmetry) for the top and
bottom layers. Such configurations may be candidates for easier assembly since the
procedure described for one layer applies to the other. The fourth example combines two
layers of different geometry and symmetry, and in addition each layer has a different value
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for f1. In all four examples described here, the "full” core is inserted and joins the two
layers; the term full is used when no struts are removed.

3.1.1 Configuration TOROID1 (#1)

Top layer

The triangular array of the top layer of the configuration named TOROIDI
(Figu-re 23a) is an interesting array of alternating large triangles, half of which are "empty"
and the other half are triangulated, making the entire configuration rigid in the plane. The
empty triangles permit large open areas without removing any nodes.

This top layer is an array with Symmetry Type A. Its fundamental region, is
shown shaded. Within the array, the fundamental region is subdivided into 4 unit triangles
(shown in dashed lines). Thus t=4. Its outer edge is thereby divided twice and thus f1=2.
The array of fundamental regions, also shown in dashed lines throughout the
configuration, has f=6. The fundamental region containing a portion of the top layer, is
shown separately on the left side (bottom). As before, the source region from the top layer
of OCTET]1 (no struts removed), also with f1=2, is shown above it. This region has no
nodes or struts removed.

Referring to the source region of OCTET], it has 1 full strut and 2 half-struts,
making a total of 2 struts. It also has 1 half-node, lying at the middle of the edge on the
lower side, and a 1/6th node lying at the top vertex of this region and thus. In the derived
configuration 1 half-strut is removed and the number of nodes is unchanged. Thus, for the
derived fundamental region Ef = 3/2 and V¢ =2/3. Since t=4, Et = 3/8 and V; = 1/6 (from
relations (25) and (26)). Substituting for E¢ and Vy in relation (10), or Egand Vg in their
place, the redundancy isR=1-2x 1/6 x 8/3 = 1/9 (or 11.1%).

Bottom Layer

The bottom layer of TOROID1 (Figure 23b) has the same geometry and symmetry
as the top layer, but here it has a node lying at the apex O (compare with Figure 23a). The
fractional part count and the redundancy is the same as the top layer.
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Core
The core is the same as a full core since no struts are removed. Eg, the number of

struts in the unit triangle of the core, is the same as OCTET]1 (see Figure 5). Thus E{=1/2
(from relation (2)). Node that since all nodes are considered to be part of either the top or
bottom truss layers, the core will never contain any nodes.

Superimposed Layers

The double-layer configuration TOROID1 (Figure 23c, shown magnified) is
obtained by superimposing the top and bottom layers just described and inserting the full
core. A portion of the infinite configuration is shown in Figure 23d. This superimposition
produces an interesting configuration composed of interlocking "rings" of octahedra and
tetrahedra and a periodic array of "holes" (hence the name "Toroid"). The holes may be
useful for inserting various modules, e.g those used for experiments, habitation, etc. or
other parts of a spacecraft. Even though struts are removed from the top and bottom
layers, triangulation is maintained on the top and bottom surface.

The values of E¢ and V¢ for the superimposed layers equals the sum of E; and V| for
the three separate layers. Thus Ey = 3/8 + 3/8 + 1/2 = 5/4. Similarly, V¢ equals the sum of
fractional nodes in the top and bottom layers, i.e. Vi = 1/6 + 1/6 = 1/3. From relation
(ID,R=1-3x1/3x4/5=1/5 or 20%. The configuration TOROIDI1 thus has a
redundancy of 20%. This is 13.3% less than the redundancy of OCTET1 from which it is
derived (R=33.3%).

3.1.2 Configuration REDUCED1 (#2)

Top Layer

The top layer of REDUCEDI (Figure 24a) also has large size "empty" triangles, but
here these are arranged in a pin-wheel manner around a central smaller triangle. It has
Symmetry Type B, and the shaded fundamental region is an obtuse triangle. The region at
apex Q is subdivided into 3 unit triangles (1 full and 4 half unit triangles) which divide the
outer edge of the region three times. Thus t=3 and f1=3. Three such regions make a larger
equilateral triangle which, along with its three fundamental regions, is repeated in an array
of f=4.
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The source region from the full top layer of OCTET], also with f1=3, has 1 full
and 1 half-strut, and 1 half-node. In the derived configuration, 1 half-strut is removed
making Ef = 1. Also, in the derived configuration the half-node is retained, making Vf =
1/2. Substituting for t and Eg in relation (25), Ey = 1/3. Similarly, substituting for t and Vf
in relation (26), Vi= 1/6. Substituting for Ey and V¢ in relation (10), the redundancy R=0
(or 0%). This layer is thus a non-redundant single-layer configuration. Of course, by
itself this configuration is not a stable structure.

Bottom Layer

The bottom layer of REDUCEDI (Figure 24b) also has empty triangles but the
geometry is different from the top layer. The empty triangles are similar in arrangement as
the top layer of TOROIDI, but the filled triangles are not fully triangulated as in the earlier
example and they have one less strut. It has Symmetry Type B and the fundamental region
has f1=6 and the array has f=2. The number of unit triangles in the fundamental region is
t=12 (from relation 15). It has the largest fundamental region of all the examples described
in this paper.

The source region of OCTET1 with f1=6 has 5 full and 2 half-struts making a total
of 6 struts. Note that the two struts on the left edge of the fundamental region are not
included here. Recall that for Symmetry Type B the fundamental region is rotated 3 times
to create an equilateral triangle which is then repeated to complete an array. The two
"missing" struts will be "filled in" as a result of the 3-fold rotation. From this, 1 full and
both half-struts are removed, i.e. for the derived array Eg=4. From relation (25), Ey = 4/12
= 1/3. The source region also has a one-third node, 2 one-twelveth nodes (only the
fractional portions of the nodes strictly inside the fundamental regions are counted and only
nodes that will be connected by struts after the 3-fold rotation are included) , and 3 half-
nodes, making a total of 2 nodes. In the derived fundamental region no nodes are
removed, thus V§ = 2. From relation (26), V¢ = 2/12 = 1/6. Substituting for E{ and V¢ in
relation (10), the redundancy R = 0 (or 0%). This configuration thus has 33.3% fewer
struts than the bottom layer of OCTET] and is also an example of a non-redundant single-
layer configuration.

Core
The core is the same as a full core of OCTET! since no struts are removed. Thus
Ei=1/2.
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Superimposed Layers

The double-layer configuration REDUCED1 (Figure 24c, also shown magnified) is
obtained by superimposing the derived top and bottom layers. A portion of the infinite
configuration is shown in Figure 24d. In REDUCEDI, the top layer, taken independently,
has a f1=3, and the bottom layer has f1=6. This is the only example described here which
has different values of f1 in the two layers. The matching is assured since the f1 values of
the two layers are a simple multiple of one another. Note that although the symmetry of
the top and bottom layers is the same, their geometries are quite different. This provides an
example of "mix-and-match” where configurations with two completely different
geometries are overlaid with the restriction that the two values of f1 are simple multiples of
one another. It is easy to see from this example how an extremely large number of
structures can be generated by mixing-and-matching top and bottom layers independently
of their geometry. The number of possibilitics increase when two different symmetries are
overlaid. Double-layer configurations with different top and bottom layers permit different

functional possibilities for the top and bottom surfaces.

The values of E; for the superimposed layers equals the sum of Eq for the three
layers. Thus E¢ = 1/3 + 1/3 + 1/2 =7/6. Similarly, V¢ equals the sum of fractional nodes
in the top and bottom layers, i.e. Vi = 1/6 + 1/6 = 1/3. From relation (11), R = 1/7 or
14.3% as compared to the value of R=33.3% for OCTET1 from which this structure was
derived.

3.1.3 Configuration REDUCED2 (#3)

Top Layer

The top layer of REDUCED?2 (Figure 25a) has a Symmetry Type C (alternate 1, see
Figure 12¢) and is composed of triangles and rhombi. It is characterized by an absence of
mirror planes and is shown as a rhombic array which is twice the size of the source
triangular array. It is composed of alternating triangles and hexagons, but the hexagons are
subdivided into three rthombi. The fundamental region is also a rhombus which is
subdivided into unit triangles. The fundamental region has f1=2 and is composed of 8 unit

triangles, i.e. t=8. The array has f=6.

The source rhombic region of OCTET1 with f1=2 has 3 full and 2 half-struts
making a total of 4 struts from which 1 full strut is removed in the derived fundamental
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region. Thus Ef = 3, and from relation (25), E; = 3/8. The full fundamental region also
has 2 half-nodes lying at two edges and a 1/3rd node at the vertex of the rhombus. In the
derived fundamental region, no node is removed. Thus Vf = 4/3, and Vi= 1/6. From

relation (10), the redundancy R = 1/9 (or 11.1%).

Bottom Layer

The bottom layer (Figure 25b) has the same geometry and symmetry as the top
layer just shown. In is in a shifted position, and is also a reflection of the top layer. This
can seen by noting that the orientation of the rhombi within each hexagon of the bottom
layer is a reflection of the thombi within each hexagon of the top layer. The fundamental
region is similar in the top and bottom layers, and the fractional part count and redundancy
remain unchanged, i.e. R=1/9. An alternative bottom layer can have the rhombi within

each hexagon oriented the same way as the top layer.

Core
The core is the same as the full core of OCTET]1 since no struts are removed. Thus
E¢=1/2.

Superimposed Layers

The double-layered configuration REDUCED? (Figure 25¢c, shown magnified), like
TOROIDI, has the same geometry for the top and bottom layers. A portion of the infinite
configuration is shown in Figure 25d. Each layer has Symmetry Type C. Looking at the
top surface, the tetrahedra and the octahedra lying below the rhombi are "incomplete”,
while those lying below the triangles are full. The full octahedra share a top vertex with the
full inverted tetrahedra. This configuration has no mirror symmetry anywhere. The 3-fold
rotational symmetry can be seen by the pin-wheel arrangement around the full octahedra,
the full inverted tetrahedra and the full tetrahedra.

The values of E; for the superimposed layers equals the sum of E; for the three
layers. Thus E¢ = 5/4. Similarly, V¢ equals the sum of fractional nodes in the top and
bottom layers, i.e. V¢ = 1/3. From relation (11), R = 1/5 or 20%. The configuration
REDUCED2, like TOROQOIDI, has a redundancy of 20% as compared to 33.3% for
OCTET]1 from which it is derived.
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3.1.4 Configuration REDUCED3 (#4)

Top Layer

The top layer of REDUCED3 (Figure 26a) has the same geometry (appearing
inverted) as that of the top layer of REDUCEDI (see Figure 24a). However, in this case
the symmetry is different and corresponds to Symmetry Type C, (alternate 2, see Figure
12d). The rhombic array has no mirror-symmetry and cannot be bisected into two halves
by a mirror plane. Compared with REDUCEDI, the fundamental region is a rhombus and
is reduced the size of the fundamental region in the earlier example. The fundamental
region has f1=3. The number of unit triangles in the fundamental region, given by relation
(19), is t=6. The array is also a thombus with f=4.

The source region of the full OCTET2 has 1 full node and 3 full struts. In the
derivative, 1 strut is removed. Thus Ef = 2. From relation (25), Et=1/3. Also, in the
derivative the node is retained. Thus V§ = 1, and V¢ = 1/6 (from relation (26)). The
redundancy is R =0 (or 0%). The top layer of REDUCED3 is another example of a non-
redundant 2-dimensional structure.

Bottom Layer

The bottom layer (Figure 26b) has the same geometry and symmetry as the top
layer. The only difference is that here the large triangles are pointing down, whereas in the
top layer the same triangles were pointing up. The fractional part count and the redundancy

are the same as for the top layer.

Core
The core is the same as the full core of OCTET?2 since no struts are removed. Thus

again E¢ = 1/2.

Superimposed Layers

The double-layered configuration REDUCED3 (Figure 26¢, shown same size as the
top and bottom layers) is obtained by superimposing the top layer and the bottom layer as
shown and inserting the full core. A portion of the infinite configuration is shown in
Figure 26d. The small triangles of one layer are placed directly over the large triangles of
the other layer. Since the two point the same way this produces concavities in the shape of
frustums of larger tetrahedra which are separated by smaller full octahedra. Looking at it
from above, each full octahedron is surrounded by three frustums which are facing up
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alternated by three which are facing down. This makes the configuration look like an
undulating surface around the octahedron.

The values of E; for the superimposed layers equals the sum of E for the three
layers. That is, Ey = 7/6. Similarly, V¢ equals the sum of fractional nodes in the top and
bottom layers, i.e. V¢ = 1/3. From relation (11), R = 1/7 or 14.3% (which is the same as
for configuration REDUCED1) as compared to R=33.3% for OCTET2 from which it is
derived.

3.2 Configurations with Nodes and Struts Removed

This class of configurations consists of structures in which nodes are removed
periodically over the entire structure. Struts attached to these nodes are removed in the
process. This is achieved by removing nodes and struts from the fundamental region.
Struts attached to this node are also removed in the process. Configurations of this type
have larger open areas within a structure, making it lighter and providing the possibility for
efficient attachment of larger spacecraft components. The open areas are not restricted in

size in many examples.

The removal of nodes can be thought of as removing entire portions of the octet
configuration. This removal leaves behind empty spaces in the shape of large sized
polyhedra or portions of such polyhedra. In cases where the empty spaces are "holes", a
special class of structures termed "toroidal" configurations are obtained. One example of a
toroidal structure with small holes (TOROID1) , has already been discussed.

Five double-layered configurations with nodes and struts removed are presented.
Two examples of these are derived from OCTET], and three from OCTET?2. These five
include three examples of double-layered toroidal structures.

3.2.1 Configuration SKEWI1 (#5)
Top Layer
The top layer of SKEW1 (Figure 27a) is a well-known semi-regular tessellation

composed of hexagons and triangles, where the hexagons can be seen as "islands”
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surrounded by "rings" of triangles. Each ring can be thought of as a flat torus. This
configuration can be left-handed or right-handed, and is the only example in this paper
where the centers of symmetry, when joined, produce a skewed triangular grid. Skewed
triangular grids have a Symmetry Type C. The fundamental region is a rhombus which is
embedded in the skewed grid. The fundamental region has Symmetry Type C but because
it is also skewed, it is different than either alternate 1 or alternate 2 as shown in Figure 12.
The unit triangles within the shaded fundamental region at O are skewed with respect to the
rhombus. Skewed grids cannot be described in terms of a single division like f1 since a
second parameter f2 is necessary; details are described in [12]. The number of unit
triangles in the fundamental region equals 14, i.e t=14.

The source full region of OCTET1 has 7 full struts in its fundamental region from
which 2 struts are removed. Thus Ef = 5. From relation (25), Ef = 5/14. The full region

also has 2 full nodes in the interior of the rhombus and a 1/3rd node which is removed.
Thus V¢ = 2. From relation (26), V{ = 1/7. From relation (10), the redundancy R = 1/5 or
20%. In the figure, the removed node is shown in the fundamental region and the array,

but is clearly disconnected from the rest of the structure.

Bottom Layer

The bottom layer (Figure 27b) has the same symmetry and geometry as the top
layer. It is in a shifted position with the apex O lying at the center of a hexagon of the
tessellation. By comparison, the top layer has the apex O at the center of a triangle. Within
the fundamental region (and hence the unit triangle), the part count and the redundancy is
the same in each layer though the distribution of the nodes and struts is different. For
example, in the case of nodes, the bottom layer has two 1/6th nodes while the top has one
1/3rd node.

Core

The core (Figure 27c) has an interesting geometry consisting of hexagons
surrounded by 12-sided non-convex polygons in a trefoil shape. The core struts are
removed along with the nodes on the top and bottom layers. The core thus has a dependent

geometry.

The full region of OCTET1 has 7 struts from which 2 struts are removed. Thus Ef = 5.
From relation (25), E; = 5/14.
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Superimposed Layers

The double-layered configuration SKEW1 is obtained by superimposing the top
layer and the bottom layer and inserting the core. A rhombic array is shown in Figure 27d
and a portion of the infinite configuration is shown in Figure 27¢. In the superimposed
position, the polygons of one layer are juxtaposed over different parts of the other layer.
The triangles overlaid on the hexagons, and the hexagons overlaid on the triangles, define
an undulating triangulated surface. Some triangles of the top layer are overlaid on inverted
triangles of the bottom layer and make full octahedra. Other triangles of the top layer are
overlaid on nodes of the bottom layer and make full inverted tetrahedra. Three inverted
tetrahedra surround the full octahedra to make a composite module which is repeated at
specific locations. SKEW!1 is an interesting example of an all riangulated structure derived
from the octet configuration.

As before, the value of E; for the superimposed layers equals the sum of E for the
three layers. That is, Ey = 5/14 + 5/14 + 5/14 = 15/14. Similarly, V equals the sum of
fractional nodes in the top and bottom layers, i.e. V¢ = 1/7 + 1/7 = 2/]. From relation
(11), R=1-3x2/7 x 14/15=1/5 or 20%. The configuration SKEW1 has a redundancy
of 20% compared with 33.3% for OCTET]1 from which it is derived.

3.2.2 Configuration MINIMUMI1 (#6)

Top Layer

The top layer of MINIMUM 1 (Figure 28a) is a semi-regular tessellation composed
of alternating triangles and hexagons. The hexagons, six times the area of the triangle, are
obtained by removing the node lying in the center of each hexagon. This configuration has
Symmetry Type A, the fundamental region has fl=2, and the array has f=6. The
fundamental region has 4 unit triangles, i.e. t=4.

The source region of the octet layer has 1 full and 2 half-struts making a total of 2
struts from which 1 full strut is removed. Thus Ef = 1, and from relation (25), E; = 1/4.

In addition, the full configuration has a half-node lying on the mid-edge of the region and a
1/6th node at the vertex from which the 1/6th node is removed. Thus V¢ = 1/2. from
relation (26), V¢ = 1/8. The redundancy is R = 0 (or 0%). This is another example of a
non-redundant 2-dimensional configuration. As before, the removed node is shown for
visualization purposes although it is disconnected from the rest of the configuration.
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Bottom Layer

The bottom layer (Figure 28b) is already a familiar one from earlier examples and is
identical to the top layer of TOROID1 (see Figure 23a and earlier description). Note that
this layer has only struts removed. The part count and the redundancy is the same as the
top layer of TOROID]1, i.e. E; = 3/8, Vi = 1/6 and R = 1/9 (or 11.1%).

Core

The core (Figure 28c), in the plan view shown, is composed of hexagons
surrounded by the non-convex 12-sided polygons as seen earlier in the core of SKEW1
(Figure 27¢). The full core has 1 full and 2 half-struts making a total of 2 struts; the half-
struts lie on the edges of the region. In the derived core, 1 half-strut is removed. Thus Ef
= 3/2. Here also t=4. Thus E; = 3/8 (from relation (25)).

Superimposed Layers

The double-layered configuration MINIMUM1 (Figure 28d, shown magnified),
obtained by superimposing the top, bottom and core layers, is an interesting example of a
hybrid configuration where the top and bottom layers are of different classes. The top has
nodes and struts removed while the bottom layer has only struts removed. After
superposition, the configuration obtained is composed of full octahedra and full tetrahedra
only. In this sense, MINIMUMI is also an "octet" configuration though with many
components removed. A portion of the infinite configuration is shown in Figure 28e.

Each octahedron is surrounded by 3 upright tetrahedra. This arrangement acts like
a composite module which is repeated throughout the array, as in SKEW1. Three such
modules are connected by an inverted tetrahedron. The three inclined faces of the inverted
tetrahedra lie on three inclined 2-dimensional trusses which are continuous. The entire
configuration has three parallel sets of inclined trusses intersecting at 12090,

The sum of fractional struts from each layer makes Et = 1. The sum of fractional
nodes of the top and bottom layers makes Vt = 7/24. The redundancy R = 1/8 (or 12.5%),
from relation (11). Of all examples discussed in this paper, MINIMUMI1 has the lowest
redundancy (hence the name MINIMUM]1).



3.2.3 Toroidal Configurations

Three examples of toroidal configurations are presented. The formal aspects are
first described and are followed by specific examples of the configurations TOROID2,
TOROID3 and TOROID4 (see Figures 29d, 30d and 31d).

Periodic toroidal configurations are composed of doughnut-shaped modules in 2- or
3.dimensional arrays where individual doughnuts (tori) are fused together to make a
continuous structure. In the examples described here, the torus is composed of linear
tubular segments. Each tubular segment is composed of linear arrays of tetrahedra and
octahedra. The axes of these segments, and hence of the tori, define a network. These
networks can have different topologies and sizes, and they correspond to plane tessellations
(though in some cases only in their plan view).

Since the source structure for deriving these configurations is the octet
configuration, only double-layered toroidal configurations are described here. The double-
layered examples are a part of a large class of 3-dimensional toroidal configurations derived
from 3-dimensional networks. Note that in the examples described here the interior space
of the tubular segments is not "hollow". The exterior surfaces of these configurations
define a continuous "toroidal surface”. as required by the strict definition of a torus. The
cross members in the interior are required for stability purposes in pin-jointed structures.
When the tubular segments have a triangular cross-section, the configurations are pure

toroidal surfaces since no interior struts are needed.

Toroidal configurations have an interesting property of recursion. The toroidal structures
described here can be derived from simple tessellations by converting each single strut
(edge) of the tessellation into tubular segments composed of an array of struts "wrapped"
around a tube. Each strut (edge) of this wrapped array can again be converted into a
tubular segment as in the previous step, and so on. This process of recursion provides a
morphological device which enables us to cover larger areas with struts of the same size.

3-13



3.2.3.1 Configuration TOROID2 (#7)

Top Layer

The top layer of TOROID2 (Figure 29a) is a plane toroidal tessellation. It is
composed of flat tori which enclose large open areas enclosed by triangulated strips. It is
related to the skew tessellation of Figure 27a. Here the open areas are non-regular
hexagons with alternating sides of two different lengths. In the illustration, the open areas
are halved since the size of the array shown is relatively small. A larger-sized array than
the one shown in the illustration would show the toroidal nature of this tessellation more
clearly. The configuration shown has a Symmetry Type B, the fundamental region has
f1=6, and the array has f=2. From relation (17), t=12.

The source region of the source octet layer has 5 full struts and 2 half-struts making
a total of 6 struts. In the derived fundamental region, 2 full and 1 half-strut is removed .
Thus Ef = 7/2, and E{ = 7/24. The octet configuration also has 1 full node in the interior of
the region and 2 half-nodes on the edges from which 1 half-node is removed. Thus Vf=
3/2, and V¢ = 1/8. The redundancy R = 1/7 (or 14.3%).

Bottom Layer
The bottom layer (Figure 29b) is a slightly different toroidal tessellation. Here the

open areas (also shown halved) are large triangles. The edges of the large open triangles are
three strut lengths long. This configuration also has Symmetry Type B, the fundamental
region has f1=6, the array has =2, and t=12 as in the top layer.

The source region of the octet layer with f1=6 has 5 full struts and 2 half-struts
from which 1 full and 1 half-strut is removed in the derivative configuration (see the
comments regarding strut and node count for this type of region in the discussion for the
bottom layer of configuration REDUCED1). Thus Ef=9/2, and E¢ =3/8. In addition, the
full octet layer has a 1/3rd node at the obtuse vertex, two 1/12th nodes at the acute nodes
and 3 half-nodes at the three edges of the region, making a total of 2 full nodes. From this
the two 1/12th nodes are removed. Thus, Vf=11/6, and V¢ = 11/6 x 1/12 = 11/72 (from
relation (26)). Substituting for E¢ and V¢ in relation (10), the redundancy R =1 -2 x 11/72

x 8/3 =5/27 (or 18.52%).
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Core

The core (Figure 29¢) has a dependent geometry composed of rows of hexagons (in
the plan view). It has 5 full struts and 2 half-struts (half struts lie on the edge of the
fundamental region ) making a total of 6 struts. In the derived core, 1 full and 1 half-strut
is removed. Thus Ef =9/2. Since the core also has t=12, Ey = 3/8.

Superimposed Layers

The double-léyercd configuration TOROID?2 (Figure 29d, shown magnified) is
obtained by superimposing the three layers. A portion of the infinite configuration is
shown in Figure 29¢. The triangulated strips on the top and bottom, with the rows of
hexagons in the core, make up the tubular segments of each torus. Three tubular segments
meet around an inverted tetrahedron in a pinwheel manner. The vertical axis through each
inverted tetrahedron is a 3-fold axis of rotation. Alternative toroidal structures can be
obtained when the 3-fold axes pass through the upright tetrahedra, the octahedra, or a
combination of these polyhedra. The empty spaces in the structure (shown halved) have a
non-regular hexagon superimposed over a large equilateral triangle.

The sum of fractional struts from the three layer makes Et = 25/24. The sum of
fractional nodes of the top and bottom layers makes V¢ = 5/18. From relation (11), the
redundancy R = 1/5 (or 20%). Again, this should be compared with the value of R=33.3%
for OCTET1 from which this configuration is derived.

3.2.3.2 Configuration TOROID3 (#8)

Top Layer

The top layer of TOROID3 (Figure 30a) has the same geometry and symmetry as
the top layer of TOROID2 (see Figure 29a and the earlier description). It can be obtained
from the earlier example by a reflection around the horizontal line passing through the
apex 0. The part count and redundancy are the same as the top layer of TOROID?2, i.e.
E(=7/24,Vy=1/8,and R = 1/7 (or 14.3%). Also, t=12, as in the earlier example.

Bottom Layer

The bottom layer (Figure 30b) has the same geometry and symmetry as the top
layer. It can be obtained from the top layer by a reflection around the horizontal line
passing through the apex O. It is identical to the top layer of TOROID2 (Figure 29a).
Again Ey=7/24, V¢ =1/8,and R = 1/7.
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Core
The core (Figure 30c) here is also composed of rows of hexagons in the plan view.

The geometry, obtained by removing struts associated with the removed nodes, is also
dependent as in the earlier examples. The full configuration has 5 full struts and 2 half-
struts making a total of 6 struts from which 1 full and 2 half-struts are removed, Thus
Ef =4, and since t=12 as in the top and bottom layers, E; = 1/3.

Superimposed Layers

The double-layered configuration TOROID3 (Figure 30d, shown magnified) is
related to TOROID?2 and is obtained by superimposing the layers as before. Here the three
tubular segments meet around an octahedron. A portion of the infinite configuration is
shown in Figure 30e. The empty spaces are composed of two identical non-regular
hexagons overlaid over one another, but one is rotated at 60° with respect to the other.

The fractional struts in the unit triangle E¢ = 11/12, is obtained by adding the values
of E¢ for each of the three layers as before. Similarly, V¢ = 1/4. Finally the redundancy is
R =2/11 (or 18.2%) as compared with 33.3% for OCTET2.

3.2.3.3 Configuration TOROID4 (#9)

Top Layer

The top layer of TOROID4 (Figure 31a) is a toroidal tessellation based on a
different network. Here, the center-lines of the triangulated strips make a regular triangular
grid, showing a self-similarity with the source triangular grid from which the configuration
is derived. This self-similar recursion could be continued to the next stage where each
individual strut within a triangulated strip could itself be a triangulated strip, and so on.
The configuration shown has f1=4, f=3, and Symmetry Type A. The number of unit
triangles in the fundamental region is t=16.

The source region of the octet layer has 6 full struts and 4 half-struts from which 1
full and 2 half-struts are removed in the derived fundamental region. Thus Ef = 6, and
Et = 3/8. The full region also has 1 full node, 3 half-nodes and a 1/6th node from which
the 1/6th node is removed. Thus Vf = 5/2 and Vt = 5/32. From relation (10), the
redundancy is R = 1/6 (or 16.7%).
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Bottom Layer

The bottom layer (Figure 31b) has the same geometry and symmetry as the top
layer. One can be obtained from the other by a reflection around the horizontal line passing
through the apex O. The part count and redundancy is the same as the top layer.

Core

The core (Figure 31c) is composed of rows of hexagons in a triangular arrangement
determined by the network. The full region has 6 full struts and 4 half-struts making a total
of 8 struts. In the derived core fundamental region, 2 half-struts are removed. Thus Ef =7

and E¢ =7/16.

Superimposed Layers

The double-layered configuration TOROID4 (Figure 31d and 31e) is obtained by
superimposing the top, bottom and core just described. This example, like TOROID2 and
TOROID3, is also composed of tubular segments. Six such segments meet at the
octahedron in the center of the array shown in the figure. The empty spaces are triangular

holes composed of a smaller triangle superimposed over a larger triangle.

Taken together, Ey = 19/16 for all three layers. Similarly, V¢ = 5/16. From
relation (11), the redundancy for TOROIDA4 is given by R = 4/19 (or 21.1%) compared to
33.3% for OCTET?2 from which it is derived.
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PART 4
REMARKS AND SUMMARY OF RESULTS

4.1 Rationale and Analytical Considerations for the Truss

Configurations Presented

It is possible to generate many different truss configurations using the structure-
generation techniques presented in Part 2. Although approximately twenty-five
configurations derived from the Octet truss were investigated in the work leading to this
paper, only nine have been presented. It is noted that prior work for deriving and
analyzing a special class of "statically determinate” reduced-part-count structures is
presented in reference [13].

The selection of these nine configurations presented here was based on both
practical and analytical considerations. For each reduced-part-count truss configuration,
analytical (finite-element) models were formulated. Models were also constructed for the
two configurations with full part count, OCTET1 and OCTET2. The analytical models
were formulated by "cutting” a finite portion from the infinite configurations shown in
Part 3.

The finite truss models were constructed to be hexagonal in shape. This shape is
typical for many large space applications. Each model utilized strut and joint properties
assumed to be typical for large precision truss applications. Descriptions of these
properties can be found in reference [S]. A detailed presentation of analytical results is
beyond the scope of this paper which focuscs on the morphological aspects of each
configuration. More details concerning the analytical results for the structures presented
here are contained in reference [14]. The practical design and structural performance of the
truss configurations are the subjects of current and future work. However, a few

comments are appropriate here.

Each of the nine truss configurations presented is structurally stable (not a
mechanism). Stability is not guarantied from the generation techniques presented in Part 2.
Furthermore, visual inspection of a particular truss configuration is not in general a reliable
means of detecting an unstable structure. Thus, the primary purpose of the analytical

models was to insure stability.



The fact that a particular configuration is stable is not sufficient to make it useful.
Several reduced part count configurations were examined that although stable, showed a
significant decline in structural performance when compared to the original octet
configurations. The gauge for structural performance in selecting the nine configurations
presented here was free-free natural vibration frequency. Free-free vibration frequency
provides a useful measure of structural stiffness. The natural frequencies of the truss
models examined ranged from 16 Hz for configuration REDUCED3, to 21.7 Hz for both
configurations OCTET1 and OCTET2. The reduction in frequency for the reduced part
count configurations ranged from 15% for TOROID2 to 26% for REDUCED3. A more
complete structural analysis of the various configurations and an in depth comparative
study are underway at the time of this writing.

A primary motivation for finding reduced-part-count structures is to reduce
complexity and on-orbit assembly time. The results of the finite element analyses indicate
that it is possible to generate structures with significantly reduced part count and only a
moderate decrease in structural performance. Reference [14] discusses some altemnatives
for overcoming reductions in structural performance white retaining reduced part count.

4.2 Summary of Results

The part count and the redundancy for the nine truss configurations are summarized
in Table 2. The fractional part count, given by the number of struts E¢ and nodes V¢ within
a unit triangle, is given for each truss. A comparison of part count is possible since the unit
triangle is kept the same size throughout all the examples of derived configurations. The
number of redundant struts (relations 7 and 8) is given in the third column. The ratio of
redundant struts to the total number of struts, R, is given in the fourth column. The octet
configurations OCTET1 and OCTET? are given at the bottom to provide a reference.



Struts in Nodes in Redundant
No. Configuration Unit Triangle | Unit Triangle Struts Redundancy
and (Ed) (Vo) (r) (R)
Single-Layer
Symmetry Types ()

#1 TOROID! (A) 5/4 1/3 1/4 1/5 (20%)
#2 REDUCED!1 (B) 7/6 1/3 1/6 1/7 (14.3%)
#3 REDUCED?2 (C) 5/4 1/3 1/4 1/5 (20%)
#4 REDUCED3 (C) 7/6 13 1/6 1/7 (14.3%)
#5 SKEWI (C) 15/14 211 3/14 1/5 (20%)
#6 MINIMUMI (A) 1 7/24 1/8 1/8 (12.5%)
#1 TOROID2 (B) 25/24 5/18 5/24 1/5 (20%)
#8 TOROID3 (B) 11/12 1/4 1/6 2/11  (18.2%)
#9 TOROID4 (A) 19/16 5/16 1/4 4/19  (21.1%)
#10 OCTETI1 (A) 32 1/3 1/2 1/3 (33.3%)
#11 OCTET2 (A) 3/2 1/3 1/2 1/3 (33.3%)

Table 2. Comparative Fractional Part Count and Redundancy of the Octet Truss
and Nine derived Configurations.

The reference octet trusses have R=33.3%. Among the derived configurations, the
redundancy varies from a high of 21.1% for TOROID4 to the low of 12.5% for
MINIMUMI.

A useful comparative measure for the relative part count of configurations can be

given by the ratio of the number of struts to nodes. For infinite configurations, like the

ones being discussed here, this ratio is given by Et/Vt. Table 3 lists this ratio for the nine

configurations. The ratio is also equivalent to the number of struts per node in an infinite

configuration with the same geometry. Thus the reference trusses, OCTET1 and OCTET2,

have 4.5 struts for every node. The minimum value for this ratio is 3.0, which would

occur for a non-redundant structure. All derivative configurations range between the two

extreme values of 3.0 and 4.5. More specifically, the lowest ratio is 3.43 struts per node.
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Ratio of Struts to
No. Configuration Nodes in Unit
Triangle (Ey/Vp*
= TR —
#1 TOROID1 3.75
#2 REDUCEDI 3.5
#3 REDUCED?2 3.75
#4 REDUCED?3 3.5
#5 SKEW1 3.75
#6 MINIMUMI 3.43
#7 TOROID2 3.75
#8 TOROID3 3.67
#9 TOROID4 3.8
#10 OCTET]I 4.5
#11 OCTET2 4.5

*For an infinite non-redundant truss, Ey/Vy = 3.0

Table 3. The Ratio of Struts to Nodes for a Unit Triangle Region of
Each of the Eleven Truss Configurations.

Lowering the ratio of struts to nodes below 3.43 in infinite double-layered
configurations would be an attractive goal to pursue. Though geometric configurations
with a lower ratio may be found, the examples presented here are those which resulted in
frequency reductions of 15-26%. This is an important constraint and makes the search for
stiff and uniformly periodic structures a difficult challenge.

Morphological studies provide an imporiant and systematic direction in this
challenge for the discovery of structures with a reduced number of components. Towards
this end, the fundamental region and the unit triangle method described here provides an
expedient and economical way to derive new geometries for infinite, periodic space
structures. This method also provides a compact way to derive the part count and
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redundancy. Since a common approach is used for all space structures, independent of
their geometry, symmetry or dimension, a comparative study is made possible. Though
the examples described here are based on the octet truss, the approach described here is
general and can be easily extended to other source geometries and symmetries in 2- and 3-
dimensions. The generality of the approach opens up directions for further research in the

morphology of novel space structures.
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GLOSSARY OF TERMS

Frequency

The term "frequency” is used for number of linear divisions (or unit triangles) f1 of a
fundamental region. In most cases this is along the edge of the fundamental region. It is
also used for the number of divisions (fundamental regions) f along the edge of an entire
periodic array. While the former provides the extent of subdivision of the fundamental
region, the latter defines the extent of plane-filling of the entire array.

Full (structure, region,....... etc.)

The term "full" is used to identify a structure or region from which no struts have been
removed. Full structure, full fundamental region, full layer, full top layer, etc. are
configurations containing all struts from which derivatives are obtained by removing struts.
The term is adapted from "full set” used in set theory.

Fundamental Region
The minimum region of a symmetrical configuration which can generate an entire periodic

structure by symmetry operations (reflections, rotations, translations).

Inversion (Plane of Inversion)

The term "plane of inversion", represents a special type of symmetry plane which permits
"inversion". By inversion, the region on the top left of this plane (and facing down) is
transformed or "inverted" to the bottom right of the plane (and facing up). In the octet
truss, the planes of inversion are perpendicular to the top and bottom layers of the truss.

Mechanism
An unstable pin-jointed structure.

Octet Configuration L N
The octet truss or the tetrahedral truss composed of a close-packed array of regular
octahedra and tetrahedra.

Part Count

The number of component parts in a physical space structure, i.e. the number of nodes,

struts, and other components.
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Plane-filling
(adj.) Having the property of filling the entire (2-dimensional) plane completely without
gaps, e.g. a plane-filling polygon, or a plane-filling procedure.

Space-filling

(adjective) Having the property of filling entire space (usually 3-dimensional) completely
without gaps;

(noun) A structure which has the property of filling all space; alternatively also sometimes

termed a "close-packing”.

Space Structure

A generic term for a 3-dimensional configuration. Usually used for configurations
composed of topological elements of different dimensions, namely, vertices, edges, faces
and cells. In a physical structure, these topological elements translate into nodes, struts,

panels, and 3-dimensional modules.

Symmetry Elements
The (abstract) component parts of a symmetrical structure. Symmetry elements include

mirror planes, axes of symmetry, etc.

Symmetry Operations
Reflection, rotation, translation and their combinations.

3.fold Symmetry / 3-fold Rotation

The usage P-fold symmetry suggests a P-fold rotation, or the presence of a P-fold axis of
rotation in a structure. A rotation of P times through an angle of 3609/P about this axis
brings the structure back to its original orientation. In structures with a 3-fold symmetry,
P=3, and the structure is composed of three identical parts which can be brought in
congruence with one another by a rotation of 1200 about the 3-fold axis.

Unit Triangle

The minimum equilateral triangle unit used for generating a periodic octet array. It is the
plan view of the triangular prism unit of the octet truss, but is used here as a convenient 2-
dimensional unit (of constant size) used for comparative studies of different double-layered

truss configurations.
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NOTES

. Altenatively, all edges of the space-filling of octahedra and tetrahedra can be determined by
"vectors" which are defined by lines joining the center of the cube to the mid-points of its
edges. Since the cube has 12 edges, and the opposite two lie on the same vector, 6 distinct
vectors can be specified this way. All edges of the octahedral-tetrahedral space-filling are
parallel to these 6 vectors. The 6 vectors define a 6-dimensional Euclidean space, and the
octet truss can be thought of as a 3-dimensional structure projected from 6-dimensional
Euclidean space. The concept of seeing 3-dimensional structures as projections of n-
dimensions broadens the definition of space structures and provides a more general way to
classify and generate new space structures.

. The symmetry of the octet truss corresponds to the symmetry group p3ml in the
international crystallographic notation.

. An interesting alternative to this procedure is to use "self-similarity” for plane-filling. By
this method, one larger equilateral triangle is obtained from four smaller equilateral triangles
such that the side of the larger triangle is twice the side of the smaller triangle. This
procedure can be continued recursively and the value of f doubles at each stage of
recursion.

. These eight are a part of 16 double-layered symmetries associated with the triangular-
hexagonal symmetry groups (see Fig.187 in [11], where the "unit mesh" number 75
corresponds to the double-layered octet truss).

. Symmetry Type A is notated as p3m1 in the international crystallographic system.
Symmetry Type B has the crystallographic symbol p31m, and Symmetry Type C has the
symbol p3 (see [10]). Note that the single layer of the octet can also be associated with
two other plane symmetry groups, p6mm and p6. These have 6-fold symmetry at each
node; in the examples described later in Part 3, Figure 27a corresponds to p6 and Figure
28a to p6mm. However, since the double-layered octet has 3-fold axes of symmetry only,
the introduction of these two additional symmetries was not considered necessary.

. The two correspond to the two basic subdivisions of an equilateral triangle and are used in
the derivation of geodesic domes. In spherical subdivisions based on the icosahedron,
Alternative 1 described here corresponds to the 'alternate’ breakdown, and Alternative 2 is
the 'triacon' breakdown.

. Incidentally, the rhombi with f1=3 in Figures 12¢ and 12d correspond to the
crystallographic unit cell which can fill the entire plane by translations only. This gives us
an alternative plane-filling procedure.

. The structures described here are restricted to the removal of nodes and struts. The
techniques of structure-generation described here can be extended to include removal of
panels (faces) and 3-dimensional cells.

. Note that in the method described here, the subdivision inside the fundamental region has
the same geometry as the octet configuration. In this sense, there is a property of "self-
similarity” associated with the procedure described here. This self-similarity can be used
recursively to derive "fractal” trusses with a reduced part count.

8-1



10. This particular derivative, which will be used later in two different derivatives, is also a

11.

12.

part of an infinite series of tessellations composed of Sierpinski triangles. Sierpinski
triangles are characterized by a recursive self-similarity and are thus fractals. Periodic
tessellations using these triangles and their 3-dimensional extension into an infinite class of
'fractal tetrahedra’ have been suggested concurrently in a separate project (Non Redundant
Space Structures, unpublished report to Joint Institute of Flight Sciences, George
Washington University, NASA LaRC, May 1990, available from authors). The inherent
property of non-redundancy in these fractal polyhedra and the Sierpinski triangle have also
been pointed out; details are being prepared at the time of this writing.

An alternative approach is to determine the number of equilateral triangular regions of
frequency f1 within a triangular array of frequency f. Such equilateral triangles correspond
to the fundamental regions of frequency f1. For a fixed f1, the number of such triangular

regions in an array of frequency f equals f2 for each Symmetry Type.

This zig-zag array is a layer through the "diamond lattice", a lattice which can be visualized
as an array of 4 struts meeting at every node at co-equal angles of 109°28'. This makes
TOROID2 a double-layered slice of a 3-dimensional "infinite polyhedron” based on the
diamond lattice. Infinite polyhedra have been described in Infinite Polyhedra by B.
Wachman and M. Kleinman (Technion, Israel Institute of Technology, Haifa, Israel,
1974). In the present work, TOROIDI is obtained by a different procedure, i.e. by
removing struts from an octet truss.
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